Risk of Catheter-Related Bloodstream Infection in Elderly Patients on Hemodialysis

Mariana Murea,* Kimone M. James,* Greg B. Russell,† Graham V. Byrum III,§ James E. Yates,§ Nicholas S. Tuttle,§ Anthony J. Bleyer,§ John M. Burkart,* and Barry I. Freedman*

Abstract
Background and objectives Elderly patients require tunneled central vein dialysis catheters more often than younger patients. Little is known about the risk of catheter-related bloodstream infection in this population.

Design, setting, participants, & measurements This study identified 464 patients on hemodialysis with tunneled central vein dialysis catheters between 2005 and 2007. Outpatient and inpatient catheter-related bloodstream infection data were collected. A Cox proportional hazards regression analysis adjusting for sex, ancestry, comorbidities, dialysis vintage, dialysis unit, immunosuppression, initial catheter site, and first antimicrobial catheter lock solution was performed. The computerized database provides information regarding dialysis access type in each patient and is used for the first time, or catheters are removed. Age at dialysis initiation and study entry, sex, ancestry, catheter-related bloodstream infection events occurred (190 events in nonelderly and 18 events in elderly patients), with a catheter-related bloodstream infection incidence per 1000 catheter-days of 1.97 (4.6) in nonelderly and 0.55 (1.6) in elderly patients (P < 0.001). Relative to nonelderly patients, the hazard ratio for catheter-related bloodstream infection in the elderly was 0.33 (95% confidence interval, 0.20 to 0.55; P < 0.001) after multivariate analysis.

Conclusion Elderly patients on hemodialysis using tunneled central vein dialysis catheters are at lower risk of catheter-related bloodstream infection than their younger counterparts. For some elderly patients, tunneled central vein dialysis catheters may represent a suitable dialysis access option in the setting of nonmaturing arteriovenous fistulae or poorly functioning synthetic grafts.

Introduction
Caring for elderly individuals with advanced CKD or end stage kidney disease (ESKD) encompasses complex medical decisions, including the choice of optimal hemodialysis (HD) vascular access (1,2). Although avoidance of tunneled central venous dialysis catheters (TCVCs) is a major goal in all HD patients, arteriovenous fistulae (AVFs) often fail to develop and/or are not used in the elderly (3,4). Dialysis catheters are associated with systemic inflammation and catheter-related bloodstream infections (CRBSIs), which are linked to shortened dialysis survival (5–7). Nevertheless, elderly patients on dialysis represent a unique subgroup, and consideration of all potential access options should be given when presented with nonmaturing AVF or poorly functioning grafts. Knowledge of age-specific risk of CRBSIs could aid the decision-making process regarding choice of dialysis vascular access, balancing likelihood of prolonged access function with complications. In this retrospective study, the incidence of CRBSIs between elderly (age ≥ 75 years) and young, middle-aged, and old (ages 18–74 years) patients receiving HD by means of TCVCs was compared.

Material and Methods
Study Participants
We accessed the central database of all prevalent and incident patients on HD ages ≥ 18 years from January 1, 2005 and December 31, 2007. Patients with < 21 catheter-days (single catheter observation or total time accrued from multiple catheters) by the end of study period were excluded. No distinction was made between acute and chronic dialysis. The computerized database provides information regarding dialysis access type in each patient and is updated whenever a new access is placed, an access is used for the first time, or catheters are removed. Age at dialysis initiation and study entry, sex, ancestry, catheter-days during the observation period, and initial allocation of the TCVC and first catheter lock solution (CLS) used...
at study entry were recorded. Etiology of ESKD and comorbidities (diabetes, coronary artery disease [CAD], congestive heart failure [CHF], hypertension, and peripheral vascular disease [PVD]) were abstracted from the Center for Medicare and Medicaid Services 2728 Form. All episodes of CRBSI occurring during the study period for each individual were analyzed, including outpatient infections treated at the dialysis unit and infections requiring hospitalization or diagnosed during an unrelated hospital admission. For each subject with CRBSI, we reviewed inpatient and outpatient records to assess (1) occurrence of complications related to CRBSI, such as sepsis, endocarditis, osteomyelitis, septic arthritis, or diskitis; (2) prescription of immunosuppressant drugs (e.g., prednisone, cyclosporine, tacrolimus, sirolimus, mycophenolate mofetil, azathioprine, or methotrexate); and (3) prescription of chemotherapy during the study. Place of residence for elderly patients during the study period (home, assisted living facility, or nursing home) was extracted from medical records. The initial CLS used during the study was heparin (1000 U/ml), gentamicin (GM) citrate (solution of 320 μg/ml GM in 4% sodium citrate), or normal saline (10 ml per catheter branch). At WFOPD facilities, patients receive GM citrate CLS either (1) temporarily (as treatment for CRBSI in conjunction with systemic antibiotics) or (2) on a regular basis when facing limited vascular access options or to prevent CRBSI. For this study, GM citrate was recorded as the patient’s CLS only when used in the latter fashion. Medical records for all hospitalizations were reviewed by a single investigator (K.M.J.) to consistently ascertain causes of hospitalization. Patients were censored when they reached the end of the study while dialyzing with a TCVC, when switched to an alternative access (AVF or arteriovenous graft [AVG]), at transplant, or at death with a functioning TCVC. The study was approved by the Wake Forest School of Medicine Institutional Review Board.

Measurements and Outcomes Laboratory measurements (dialysis adequacy measured as single pool Kt/V, urea reduction ratio, serum albumin, hemoglobin, and ferritin) were extracted from routine monthly dialysis laboratory measurements predating within 30 days of the first episode of CRBSI (Meridian Laboratory Corporation, Charlotte, NC). Patients received protocol-standardized exit site care for the TCVC. Blood cultures were obtained at the outpatient dialysis unit and/or while hospitalized. Catheter-days were calculated from the date of study entry (in those patients with a TCVC placed before January 1, 2005) or the date of catheter placement (in those patients with a TCVC placed during the study period) to the date of catheter removal or censoring. In case of multiple periods of TCVC use per individual, catheter-days were summed, and the observation for CRBSI events overlapped the respective catheter-days. Based on existing WFOPD clinical practice, CRBSI was diagnosed if (1) positive blood cultures were obtained through the TCVC in the absence of an alternative source of infection or bacteremia, (2) the patient was hospitalized for TCVC infection with bacteremia, or (3) the patient developed a fever or chills in the absence of an alternative source of infection followed by administration of intravenous antibiotics for presumed infected TCVC, with subsequent resolution of infection.

Statistical Analyses Results are expressed as numerical values and percentages for categorical variables and mean (SD) for continuous variables. Comparisons for baseline characteristics between age groups were based on the chi-squared test for categorical data and the t test for continuous data. Age at study entry was stratified into two categories: elderly (≥75 years) and nonelderly (18–74 years). Because the catheter position and CLS varied during the observation period, we used initial catheter location and initial CLS for statistical analysis. The primary end point was age group-specific incidence of CRBSI per 1000 catheter-days. Using a multivariate Cox proportional hazards regression model and stepwise removal of other variables (sex, ancestry, comorbidities, dialysis vintage, immunosuppression, dialysis unit, initial catheter site, and initial CLS), we assessed the hazard ratio (HR) of CRBSIs for elderly compared with nonelderly (young, middle-aged, and older) patients. These variables were also analyzed separately in multivariate Cox proportional hazards regression models. Using logistic regression to fit a log-linear model using PROC GENMOD (version 9.3; SAS, Cary, NC), estimates were calculated for the HR of developing an infection per 1000 catheter-days for each participant, with P<0.05 (two-sided) denoting statistical significance. To assess the sensitivity of results, we repeated the analysis, with the outcome being documented positive blood cultures, and calculated the adjusted HR using Cox regression and the same set of variables in a multivariate model.

Results Patients Characteristics In total, 464 patients received HD through a TCVC at WFOPD centers between 2005 and 2007. Participants’ baseline characteristics are shown in Table 1 and comparable with those characteristics reported in the US Renal Data System (USRDS) (8). The mean (SD) age of the cohort was 59.9 (15.7) years, with dialysis vintage of 1.7 (3.2) years. There were 218 (47.0%) African Americans, 260 (56.0%) patients with diabetes, and 90 (19.4%) elderly (age≥75 years) patients; 73.3% of the elderly patients were European American, whereas only 43.8% of the nonelderly (age=18–74 years) patients were European American (Table 1) (P<0.001). GN was more commonly listed as a cause of ESKD in nonelderly patients; CAD and CHF were more prevalent in the elderly patients.

Of 90 elderly patients, 51 (57%) patients lived at home (mean [SD] age=80.8 [4.2] years), 5 (6%) patients lived at an assisted living facility (81.6 [5.5] years), 31 (35%) patients lived at a nursing home during the entire study period (82.1 [6.0] years), and 2 (2%) patients lived in a nursing home temporarily. During the observation period, 26 (5.6%) of total patients and 13% of patients with CRBSI patients were on immunosuppressant medications for GN (14 patients), kidney transplant (6 patients), and malignancy (6 patients). Of these patients, only one patient was elderly (78.6 years; taking thalidomide and prednisone for amyloidosis). Remaining participants had mean (SD) age of 44.8 (17.8) years.
Follow-up was censored at (1) study close in 128 (27.5%) patients (19 [21.1%] elderly and 109 [29.1%] nonelderly patients), (2) conversion from TCVC to AVF or AVG in 291 (63.9%) patients (52 [57.7%] elderly and 239 [63.9%] nonelderly patients), (3) kidney transplantation in 3 (0 elderly patients) patients, and (4) death in 42 (9.0%) patients (19 [21.1%] elderly and 23 [6.1%] nonelderly patients).

Catheter Characteristics

Mean (SD) at-risk total catheter-days were 318 (240) in elderly and 272 (243) in nonelderly patients. The most frequent TCVC insertion site was upper body (internal jugular [IJ] or subclavian [SCL] vein) in 442 (95.2%) patients followed by transitions between upper body and femoral catheters in 19 (4.0%) patients (Table 2). Of these sites, the insertion site was limited to the IJ vein in 412 (88.7%), SCL vein in 16 (3.4%), switched between IJ and SCL in 14 (3.0%), transitioned between femoral and IJ in 12 (1.9%), and transitioned between femoral and SCL in 7 (1.0%) patients. Femoral TCVCs alone were used in only two patients, and one patient (age=46 years) had a translumbar catheter. The type of CLS varied during the study period and in each individual. Heparin alone throughout the study period was the most frequently prescribed CLS in 369 (79.5%) patients (87.7% elderly and 77.5% nonelderly patients). GM citrate only was used in 20 (4.3%) patients (3.3% elderly and 4.6% nonelderly patients), and saline alone was used in 7 (1.5%) patients (1.1% elderly and 1.6% nonelderly patients). A subset of 68 (14.6%) patients received heparin followed by GM citrate (7.7% elderly and 16.3% nonelderly patients). Overall, there was no significant difference in the type of CLS used between elderly and nonelderly patients (heparin versus GM citrate versus saline; P=0.15).

Age-Related Risk of CRBSI

There were 190 episodes of CRBSI in nonelderly and 18 episodes of CRBSI in elderly patients, with a CRBSI rate of 0.55 events per 1000 catheter-days in elderly and 1.97 events per 1000 catheter-days in nonelderly patients (P, 0.001) (Table 2). In univariate analysis, the risk of CRBSI was significantly lower in elderly compared with adult patients: HR, 0.34; 95% confidence interval (95% CI), 0.21 to 0.55; P, 0.001 (Table 3).

Sex, ancestry (African American versus European American/Hispanic), diabetes, and dialysis vintage were not associated with risk of CRBSI. There was a trend to an association between immunosuppressive medications and risk of CRBSI in univariate analysis (HR, 1.61; 95% CI, 0.95 to 2.72) that diminished in multivariate analysis (HR, 1.44; 95% CI, 0.83 to 2.48). Adjusting for sex, ancestry, dialysis vintage, diabetes, CAD, CHF, immunosuppression, dialysis unit, first CLS, and initial catheter location, the association between age and risk of CRBSI did not change; relative to young, middle-aged, and old patients, elderly patients had an HR for CRBSI of 0.33 (95% CI, 0.20 to 0.55; P<0.001). The risk of CRBSI decreased

Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All</th>
<th>Elderly</th>
<th>Nonelderly</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>464</td>
<td>90 (19)</td>
<td>374 (81)</td>
<td></td>
</tr>
<tr>
<td>Age (yr), mean (SD)</td>
<td>59.9 (15.7)</td>
<td>81.3 (4.9)</td>
<td>54.8 (12.3)</td>
<td>0.64</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>237 (51.0)</td>
<td>44 (48.8)</td>
<td>193 (51.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ancestry, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European American</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>230 (49.6)</td>
<td>66 (73.3)</td>
<td>164 (43.8)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>218 (47.0)</td>
<td>24 (26.7)</td>
<td>194 (51.9)</td>
<td></td>
</tr>
<tr>
<td>HD vintage (d)</td>
<td></td>
<td></td>
<td></td>
<td>0.47</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>629 (1180)</td>
<td>547 (1063)</td>
<td>649 (1207)</td>
<td></td>
</tr>
<tr>
<td>Median (25th, 75th percentiles)</td>
<td>21 (21, 777)</td>
<td>21 (21, 812)</td>
<td>21 (21, 774)</td>
<td></td>
</tr>
<tr>
<td>Cause of end stage kidney disease, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>167 (36.0)</td>
<td>32 (35.6)</td>
<td>135 (36.1)</td>
<td>0.92</td>
</tr>
<tr>
<td>GN</td>
<td>65 (14.0)</td>
<td>4 (4.4)</td>
<td>61 (16.3)</td>
<td>0.004</td>
</tr>
<tr>
<td>Hypertension-attributed</td>
<td>70 (15.1)</td>
<td>15 (16.7)</td>
<td>55 (14.7)</td>
<td>0.64</td>
</tr>
<tr>
<td>AKI</td>
<td>30 (6.5)</td>
<td>9 (10)</td>
<td>21 (5.6)</td>
<td>0.13</td>
</tr>
<tr>
<td>Autosomal dominant polycystic kidney disease</td>
<td>8 (1.7)</td>
<td>0</td>
<td>8 (2.1)</td>
<td>0.16</td>
</tr>
<tr>
<td>Paraproteinemia</td>
<td>13 (2.8)</td>
<td>1 (1.1)</td>
<td>12 (3.2)</td>
<td>0.28</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>147 (31.7)</td>
<td>46 (51.1)</td>
<td>101 (27.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>260 (56.0)</td>
<td>52 (57.8)</td>
<td>208 (55.6)</td>
<td>0.71</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>143 (30.8)</td>
<td>44 (48.9)</td>
<td>99 (26.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>434 (93.5)</td>
<td>85 (94.4)</td>
<td>349 (93.3)</td>
<td>0.69</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>73 (15.7)</td>
<td>18 (20.0)</td>
<td>55 (14.7)</td>
<td>0.22</td>
</tr>
<tr>
<td>Medications, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Immunosuppressant</td>
<td>26 (5.6)</td>
<td>1 (1.1)</td>
<td>25 (6.6)</td>
<td></td>
</tr>
</tbody>
</table>

Age is expressed in years at study entry. Immunosuppressant medications included prednisone, cyclosporine, tacrolimus, sirolimus, mycophenolate mofetil, azathioprine, methotrexate, or chemotherapy.
by 10% for each 5-year increase in patient age (HR, 0.89; 95% CI, 0.85 to 0.93; P, 0.001). Intergroup comparisons relative to the ≥75-year-old patients age group produced a range of HRs between 2.8 and 4.5 (95% CI, 1.2 to 7.0; P, 0.001) for ages 18–65 years. Statistical significance was lost for the 66- to 74-year-old patients age group (HR, 1.7; 95% CI, 0.9 to 2.5; P=0.07) compared with elderly patients, likely because of reduced power (Figure 1).

For sensitivity analysis, we included only 177 cases with positive blood culture-documented CRBSI. The primary results were not substantially changed in univariate analysis (HR for CRBSI in the elderly relative to nonelderly patients, 0.38; 95% CI, 0.22 to 0.62) or when adjusted for sex, ancestry, diabetes, CAD, CHF, dialysis vintage, dialysis unit, immunosuppression medication, CLS, and catheter site (HR, 0.39; 95% CI, 0.23 to 0.66) (Table 4).
Catheter Insertion Site and Risk of CRBSI

There was no significant difference in the site of TCVC insertion and CLS between the two age groups, including presence of temporary or permanent femoral TCVC and use of GM citrate lock (Table 2). In this analysis, upper body TCVC location (IJ or SCL) was associated with lower risk of CRBSI than femoral TCVC (HR, 0.51; 95% CI, 0.36 to 0.73; P=0.001). The association between catheter site and CRBSI remained significant in multivariate analysis (HR, 0.50; 95% CI, 0.33 to 0.79; P=0.002 for IJ and SCL versus femoral catheters) (Table 3).

Microbiology, Laboratory Parameters, and CRBSI-Related Complications

Positive blood cultures with speciation were obtained from 177 (85.0%) episodes of CRBSI. Of these episodes, 74% of episodes were caused by gram-positive cocci (GPCs), 21.4% of episodes were caused by gram-negative rods, 4.5% of episodes were polymicrobial, and 1 episode was caused by Candida albicans fungemia. Staphylococcus aureus accounted for 44.4% of GPC infections in elderly patients and 34.4% of GPC infections in nonelderly patients (Table 5). There was no significant difference in serum albumin, hemoglobin, ferritin, or dialysis clearance (single pool Kt/V and urea reduction ratio) obtained within 1 month before the first episode of CRBSI between elderly and young, middle-aged, and older patients (Table 5).

In total, 20 complications related to CRBSI were recorded: 4 episodes of endocarditis (mean [SD] age=56.89 [9.06] years), 2 episodes of osteomyelitis (1 episode was further complicated by diskitis; ages 43 and 75.42 years), 3 episodes of sepsis (mean [SD] age=54.55 [8.83] years), and 11 episodes of septic shock (mean [SD] age=67.52 [8.98] years). Of 11 cases of septic shock, 8 cases were complicated by death (mean [SD] age=67.88 [10.08] years). Across all complications, three events occurred in elderly patients (one event of osteomyelitis with diskitis at age 75.42 years and two events of septic shock and death at ages 79.75 and 83.5 years).

Discussion

To our knowledge, this study is the first study to analyze age-specific incidence of CRBSI. This retrospective study shows that, in a large dialysis practice, elderly patients were diagnosed with and treated for CRBSI significantly less often than their nonelderly counterparts.

Initiating dialysis in elderly patients is increasingly common. In 2010, one quarter of all United States dialysis patients were ≥75 years of age, a 12.2% increase over the prior decade (9). Despite age nondiscriminative fistula first efforts, more than two thirds of incident octogenarians rely on TCVCs (10). Advanced age is a risk factor for failure of primary AVF and shortened patency duration caused by atherosclerotic or calcified arteries, and many elderly patients end up not using their AVF. A meta-analysis of 13 studies showed that the risk of primary AVF failure is 80% higher in patients ≥65 years of age.
old (4). In those patients having AVF surgery predialysis, only one of six AVFs placed in patients older than 75 years is ultimately used for dialysis access (11,12).

Physicians face a major decision as to what vascular access to plan for elderly patients with advanced CKD. This study complements our knowledge about the use of TCVCs in elderly patients. Our results showed that patients ages 75 years and older on HD have an approximately 60% lower incidence of CRBSI. Remarkably, incidence of CRBSI decreased by 10% per 5-year age increment, with the highest risk of CRBSI present in the age group 18–35 years (HR, 4.5; 95% CI, 2.0 to 7.0; P<0.001). Among other variables, sex, ancestry, dialysis vintage, and diabetes were not associated with CRBSI. Although CRBSI risk was impacted by catheter site, the incidence of CRBSI per 1000 catheter-days decreased lower among elderly compared with younger patients independent of this variable (Table 3). It is noteworthy that CRBSI-related complications did not differ by age group in our data.

Existing literature has been equivocal with respect to age and risk of bacteremia in patients on dialysis. Age was not associated with higher risk for bacteremia in some studies (13–16), whereas other studies reported higher risk of hospitalized septicemia in older patients (17). Although we assessed age as a binary predictor with a cutoff of ≥75 years, previous studies used lower age cutoffs of ≥57 (15), ≥60 (14), or ≥65 years (17). Some studies included bacteremia or septicemia of any etiology in the outcome as opposed to solely CRBSI (13,15,17). Indeed, general medicine studies revealed that elderly patients not on dialysis have higher incidence of bacteremia and sepsis secondary to underlying infections (e.g., pneumonia) because of atypical symptoms and delayed diagnosis (18). This finding could explain the higher risk of hospitalized bacteremia and septicemia of any etiology in older ESKD patients on HD and peritoneal dialysis reported in the work by Powe et al. (17).

Causes of lower rates of CRBSI in elderly patients on HD are unknown. Decreased bacterial colonization in nares and skin is a potential explanation. Jean et al. (19) reported that dialysis patients without nasal carriage of S. aureus are of nominally significant older age (68 [12] years) than carriers (58.6 [15] years; P<0.001). Skin infections are significantly less common in patients ages ≥75 compared with 65–74 years, and they continue to decrease among octogenarians (20,21). Aging is also associated with diminished response of the sweat glands to thermal stimuli, structural alteration in the eccrine glands, and reduced sweat output (22). Lower functional status with older age may pose less external mechanical stress on the catheter (e.g., catheter disruption associated with bathing or physical exercise), which in turn, may maintain the integrity of the subcutaneous tunnel and reduce entrance of skin bacteria and catheter biofilm formation.

This study has limitations. Retrospective in nature, it cannot eliminate the presence of additional variables that might confound results. Our data did not evaluate the timing of catheter site location for those patients who switched catheters, and it did not evaluate the timing of change in CLS for those patients who had more than one type of CLS during the study period. To compensate, statistical analyses were adjusted for first catheter site location and first CLS used during the study (catheter-days before the study period were not included). Statistical analyses were adjusted for first catheter site location and first CLS used during the study (catheter-days before the study period were not collected). Younger dialysis patients could have exhausted AVF or AVGs as forms of dialysis access, becoming dependent on TCVCs and having accrued more catheter-days and previous bacteremia episodes. Both of these factors associate with higher risk of CRBSI (23). Nonetheless, a snapshot of CRBSI rates in elderly compared with younger dialysis patients is informative, because it might suggest the need to recalibrate dialysis access practices based on age. Our CRBSI inclusion criteria did not exactly match Centers for Disease Control and Prevention definitions (24). However, our criteria reflect widespread clinical practice in the nephrology community. Future studies with larger sample sizes need to be performed to validate these results.

The predicament of optimizing dialysis vascular access in elderly patients grew based on recent data showing near-equivalent survival on dialysis for elderly patients with TCVCs relative to AVFs or AVGs. In the Choices for Healthy Outcomes in Caring study, survival did not differ by access type in those patients ≥65 years after comprehensive multivariable adjustments (7). In a recent USRDS-based study including solely incident HD patients ≥67 years old, fistula first planning carried similar mortality outcomes as graft
suitable approach in some geriatric patients. Access in elderly patients; use of TCVCs for HD could be recommended to determine the optimal dialysis vascular access in elderly patients with advanced CKD who would address whether dialysis catheters impact survival. This type of study is important, because it would assess the balance between the lower risk of CRBSI in the elderly and their higher comorbidity-driven competing risk for mortality.

We conclude that elderly patients ≥75 years of age on HD with TCVCs have a much lower risk of CRBSIs than their younger counterparts. This finding may explain why older patients with multiple comorbidities on dialysis do not face higher mortality when using TCVCs versus AVFs or AVGs. Dialysis access guidelines may benefit from customization for patient age to more efficiently allocate medical resources. Comprehensive geriatric assessments are recommended to determine the optimal dialysis vascular access in elderly patients; use of TCVCs for HD could be a suitable approach in some geriatric patients.

Disclosures
None.

References

Received: July 21, 2013 Accepted: November 30, 2013

Published online ahead of print. Publication date available at www.cjasn.org.